

Physical Properties of Enantiomers

Properties of enantiomers

Physical properties are the same:
melting point, boiling point, density, etc

Some others are different:
properties that depend on the shape of molecule eg. biological-physiological and optical properties.

Chirality and chiral carbons

A molecule with a single stereogenic center is chiral.

2-Butanol is an example.

H

CH₃—C—CH₂CH₃

OH

Examples of molecules with 1 chiral carbon

OH

Linalool, a naturally occurring chiral alcohol

Limonene: a chiral carbon

CH₃ carbon can be part of a ring

attached to the chiral carbon are:

-H
-C=CH₂
-CH₂CH₂
-CH₃CH=
-C=

A molecule with a single chiral carbon must be chiral. But, a molecule with two or more chiral carbons may be chiral or it may not. Ie'll return to this when we consider molecules with more than one chiral carbon atom.